
Lecture 20: Tackling Probability Distributions and
XOR Lemma
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Overview

Until now, we have treated a distribution X over {0, 1}n as the
function X : {0, 1}n → R such that X (ω) := P [X = ω]

However, for intuition purposes, we want to develop concepts
that are unique to distributions that are analogous to the
concepts in Fourier analysis of functions
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Bias of a Distribution: Intuition

Let X be a distribution over {0, 1}n

Consider the following algorithm for a fixed S ∈ {0, 1}n

1 Sample x ∼ X

2 Output S · x

The output distribution is over the sample space {0, 1}. Let p0
represent the probability that the output of this algorithm is 0;
and, p1 represent the probability of the output being 1.
We want to say that the output is “unbiased” (or, “has bias 0”)
if p0 = p1 = 1/2. Similarly, we want to say that the output
“has bias 1” if p0 = 1 and p1 = 0. Finally, we want to say that
the output “has bias −1” if p0 = 0 and p1 = −1.
Interpolating this intuition, we want to say that the bias of the
output distribution of the algorithm above is p0 − p1
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Bias: Definition

Definition
Let X be a distribution over the sample space {0, 1}n. For any
S ∈ {0, 1}n, we define the bias of X with respect to (the linear
test) S as

BiasX (S) := NX̂ (S)
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Collision Probability

Let X and Y be two probability distributions over {0, 1}n

Col(X ,Y ) refers to the probability that two samples drawn
according to X and Y turn out to be identical. We know that

Col(X ,Y ) = N〈X ,Y 〉 = N
∑

S∈{0,1}n
X̂ (S) · Ŷ (S)

Equivalently, we have

Col(X ,Y ) =
1
N

∑
S∈{0,1}n

BiasX (S) · BiasY (S)
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Bias of XOR of two Distributions

Recall that we had defined the distribution (X ⊕ Y ) as a
distribution over {0, 1}n that is identical to the function
N(X ∗ Y ).
We had also proven that

̂(X ∗ Y )(S) = X̂ (S) · Ŷ (S)

So, we can conclude that

BiasX⊕Y (S) = BiasX (S) · BiasY (S)
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Statistical Distance of Two Distributions I

For two function f , g : {0, 1}n → R, let us define L1(f − g) as
follows

L1(f − g) :=
1
N

∑
x∈{0,1}n

∣∣f (x)− g(x)
∣∣

We can upper-bound L1(f − g) using f̂ and ĝ as follows

L1(f − g) =
1
N

∑
x∈{0,1}n

∣∣f (x)− g(x)
∣∣

6
1
N

√
N ·

 ∑
x∈{0,1}n

(
f (x)− g(x)

)2
1/2

, by Cauchy-Schwarz

=

 1
N

∑
x∈{0,1}n

(
f (x)− g(x)

)2
1/2
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Statistical Distance of Two Distributions II

=

 1
N

∑
x∈{0,1}n

(f − g)(x)2


1/2

=

 ∑
S∈{0,1}n

̂(f − g)(S)2


1/2

, by Parseval’s

=

 ∑
S∈{0,1}n

(
f̂ (S)− ĝ(S)

)2


1/2

=: `2(f̂ − ĝ)
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Statistical Distance of Two Distributions III

We can obtain a similar result for statistical distance, which is
the analogue of L1(·) for functions

2SD (X ,Y ) :=
∑

x∈{0,1}n

∣∣X (x)− Y (x)
∣∣

So, we have

2SD (X ,Y ) = NL1(X − Y ) 6 N`2(X̂ − Ŷ ) = `2(BiasX − BiasY )

That is,

2SD (X ,Y ) 6
∑

S∈{0,1}n

(
BiasX (S)− BiasY (S)

)2
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Summary

Functions Probability

X̂ (S) BiasX (S) := NX̂ (S)

〈X ,Y 〉 =
∑

S∈{0,1}n X̂ (S)Ŷ (S) Col(X ,Y ) = 1
N

∑
S∈{0,1}n BiasX (S)BiasY (S)

̂(X ∗ Y )(S) = X̂ (S)Ŷ (S) BiasX⊕Y (S) = BiasX (S)BiasY (S)

L1(X − Y ) 6 `2(X̂ − Ŷ ) 2SD (X ,Y ) 6 `2(BiasX − BiasY )
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XOR Lemma I

Let X be a distribution over {0, 1} such that P [X = 0] = 1+ε
2

and P [X = 1] = 1−ε
2

Note that n = 1 and BiasX (0) = 1 and BiasX (1) = ε

Let Sn = X(1) ⊕ X(2) ⊕· · · ⊕ X(n)

Note that

BiasS(0) = BiasX(1)(0) · BiasX(2)(0)· · ·BiasX(n)(0) = 1

Note that

BiasS(1) = BiasX(1)(1) · BiasX(2)(1)· · ·BiasX(n)(1) = εn

From the biases, we can conclude that P [Sn = 0] = 1+εn

2 and
P [Sn = 1] = 1−εn

2
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XOR Lemma II

Further, we can conclude that Sn is very close to the uniform
distribution over {0, 1}, namely U{0,1}. Note that
BiasU{0,1}(0) = 1 and BiasU{0,1}(1) = 0. So, the statistical
distance between Sn and U{0,1} is upper-bounded as follows.

2SD
(
Sn,U{0,1}

)
6 `2(BiasSn−BiasU{0,1}) = `2

(
(1, εn)−(1, 0)

)
= εn

That is, Sn is getting close to the uniform distribution
exponentially fast!

In general, we can consider the sum Sn = X1 ⊕· · · ⊕Xn, where
X1, . . . ,Xn are independent distributions over {0, 1} with bias
ε1, . . . , εn, respectively. Then, we shall have
BiasSn(1) = ε1ε2· · · εn.
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XOR Lemma III

It is extremely crucial that the distributions X1, . . . ,Xn are
independent. Otherwise, we cannot multiply the biases to
obtain the bias of the sum Sn. For example, let (X1, . . . ,Xn)
be uniform random variables over {0, 1}n such that their parity
is 0 (that is, they have even number of 1s). Each random
variable has BiasXi

(1) = 0. However, the random variable Sn
has BiasSn(1) = 1.
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XOR Lemma IV

A Combinatorial Proof.
To compute the bias BiasSn(1), we need to estimate

P [Sn = 0]− P [Sn = 1]

=
∑

i is even

(
n
i

)(
1− ε

2

)i (1 + ε

2

)n−i

−
∑

i : odd

(
n
i

)(
1− ε

2

)i (1 + ε

2

)n−i

=
n∑

i=1

(
n
i

)
(−1)i

(
1− ε

2

)i (1 + ε

2

)n−i

=

(
1 + ε

2
− 1− ε

2

)n

= εn

Note that this conclusion followed so easily using Fourier
analysis
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